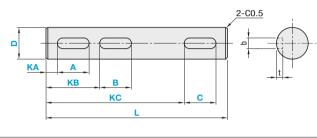

Achsen und Wellen D Toleranz h9 (kalt gezogen)/h7 (geschliffen)/g6 (geschliffen)

Gerade mit Nut



Α	usführung	Toleranz D	MWerkstoff	Oberflächenbehandlung				
	SFMKR	Lo.	EN 1.1191	Schwarz brüniert				
1	PSFMKR	h9 (kalt gezogen)	Äquivalent	Chemisch vernickelt				
	SSFMKR	(Kait gozogoti)	EN 1.4301 Äquivalent	-				
	SFHKR		EN 1.1191	Schwarz brüniert				
2	PSFHKR	h7(geschliffen)	Äquivalent	Chemisch vernickelt				
	SSFHKR		EN 1.4301 Äquivalent	-				
	SFGKR		EN 1.1191	Schwarz brüniert				
3	PSFGKR	g6(geschliffen)	Äquivalent	Chemisch vernickelt				
	SSFGKR		EN 1.4301 Äquivalent	-				

Dberflächenrauheit von Teil D für h9 (kaltgezogen) ist ∇ **. Oberflächenrauheit für h7 (geschliffen) und g6 (geschliffen) ist ∇ *. Oberflächenrauheit für h7 (geschliffen) und g6 (geschliffen) ist ∇ ***.

Rundheit und Geradheit	<u> </u>						
+	Rundhei	t bei Durchn	nesser D				
 - 	1	5	Rundheit M				
	über	oder weniger	Runaneit ivi				
	5	13	0.004				
O M - 0.01/100	13	20	0.005				
L	20	40	0.006				
(a) No. 1. (b) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	40	50	0.007				
Nicht verfügbar für h9 (kalt gezogen).	Nicht verfügbar für h9 (kalt gezoge						
Rechtwinkligkeit	Toleranz	en von L und	anderen Maßen				
	Ma	вßе	Toleranz				
 	über	oder weniger	ioieranz				
<u> </u>	2	6	±0.1				
r -	6	30	±0.2				

Nicht verfügbar für h9 (kalt gezogen).

① h9 (kalt gezogen
--------	--------------

<u> </u>									
Teile-nu	ımmer			Nut ①	Nut ②	Nut ③			
Ausführung		D н9	L=0.1mm-Schritte	KA, A	KB, B	KC, C			
Austunrung	Toleranz			1mm-Schritte					
	6	0 -0.030	20.0~300.0						
SFMKR	8	0	20.0~400.0]					
SEWIKH	10	-0.036	20.0~500.0	KA+A≤L	KB+B≤L	KC+C≤L			
DOEMKD	12	0	30.0~600.0	RATASE	KB1B3E	ROTO_L			
PSFMKR	15	-0.043	30.0~700.0	KA≥0	KB≥0	KC≥0			
	20	_	40.0~800.0	1					
SSFMKR	25	-0.052	50.0~800.0	b≤A≤100	b≤B≤100	b≤C≤100			
6 ist nicht für SSFMKR verfügbar.)	30	-0.032	60.0~800.0						
	35	0	70.0~800.0	1					

2h7 (geschliffen)

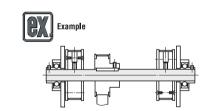
Teile	-nummer			Nut ①	Nut ②	Nut ③			
Ausführung		Dh7	L=0.1mm-Schritte	KA, A	KB, B	KC, C			
Austurirung		Toleranz		1mm-Schritte					
	6	0 -0.012	20.0~300.0						
	8	0	20.0~400.0						
	10	0.015	20.0~500.0						
SFHKR	12	0	30.0~600.0						
SFIIKH	15	-0.018	30.0~700.0	KA+A≤L	KB+B≤L	KC+C≤L			
PSFHKR	17	-0.010	40.0~800.0	KA≥0	KB>0	KC≥0 b≤C≤100			
POFINK	20	0	40.0~800.0	KA20	KB≥0				
	25	0 -0.021	50.0~800.0	b≤A≤100	b≤B≤100				
SSFHKR	30	-0.021	60.0~800.0			5303100			
	35		70.0~800.0						
	40	0 -0.025	80.0~800.0						
		-0.023	400 0 000 0						

3g6 (geschliffen)

Teile-nu	mmer			Nut ①	Nut ②	Nut ③			
Ausführung		Dg6	L=0.1mm-Schritte	KA, A	KB, B	KC, C			
Austunrung		Toleranz		1mm-Schritte					
	6	-0.004 -0.012	20.0~300.0						
	8	-0.005	20.0~400.0						
	10	-0.014	20.0~500.0						
	12		30.0~600.0						
CEOKB	13		30.0~600.0						
SFGKR	15	-0.006	30.0~700.0	KA+A≤L KA≥0					
DOEOND	16	-0.017	30.0~800.0		KB+B≤L KB≥0	KC+C≤L			
PSFGKR	17		40.0~800.0			KC≥0			
	18		40.0~800.0			RG20			
SSFGKR	20		40.0~800.0	b≤A≤100	b≤B≤100	b≤C≤100			
013, 16, 18 und 22 sind nicht für SSFGKR verfügbar.)	22	-0.007	40.0~800.0						
veriugbai.)	25	-0.020	50.0~800.0						
	30		60.0~800.0						
	35	-0.009	70.0~800.0						
	40	-0.009	80.0~800.0						
	50	-0.023	100.0~800.0						

Nut ① Nut ② Nut ③ Teile-KA - A KB - B KC - C
 nummer
 KA
 A
 KB
 B
 KC
 C

 SFMKR10
 - 325
 - KA20
 - A50
 - KB120
 - B20


 SFHKR30
 - 330
 - KA20
 - A50
 - KB120
 - B20

 SFGKR25
 - 350
 - KA10
 - A10
 - KB90
 - B30
 - KC210
 - C30
 1) h9 (kalt gezogen)

Ausführung	SFMKR (EN 1.1191 Äquivalent, brüniert)								PSFMKR (EN 1.1191 Äquivalent, chemisch vernickelt) Min.L L50.1 L100.1 L150.1 L200.1 L300.1 L400.1 L600.1							SSFMKR (EN 1.4301 Äquivalent)								
	Min.L	L50.1	L100.1	L150.1	L200.1	L300.1	L400.1	L600.1	Min.L	L50.1	L100.1	L150.1	L200.1	L300.1	L400.1	L600.1	Min.L	L50.1	L100.1	L150.1	L200.1	L300.1	L400.1	L600.1
D	3	5	2	2	2	2	2	3		2	2	2	2	2	2	2		2	2	2	2	2	2	2
	50.0	100.0	150.0	200.0	300.0	400.0	600.0	800.0	50.0	100.0	150.0	200.0	300.0	400.0	600.0	800.0	50.0	100.0	150.0	200.0	300.0	400.0	600.0	800.0
6						-	-	-						-	-	-	-	-	-	-	-	-	-	-
8							-	-							-	-							-	-
10								-								-								-
12								-								-								-
12 15 20																								
20																								
25																								
30 35	-								-								-							
35	-								-								-							
@L7 (: == \ @																						

②h7 (geschliffen) 3g6 (geschliffen)

Ausführung					.1191 Ä									lent, che										
	Min.L	L50.1	L100.1	L150.1	L200.1	L300.1	L400.1	L600.1	Min.L	L50.1	L100.1	L150.1	L200.1	L300.1	L400.1	L600.1	Min.L	L50.1	L100.1	L150.1	L200.1	L300.1	L400.1	L600.1
D	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2		2	2	2	2	2	2	2
	50.0	100.0	150.0	200.0	300.0	400.0	600.0	800.0	50.0	100.0	150.0	200.0	300.0	400.0	600.0	800.0	50.0	100.0	150.0	200.0	300.0	400.0	600.0	800.0
6						-	-	-						-	-	-						-	-	-
8							-	-							-	-							-	-
10								-								-								-
12								-								-								-
13								-								-	-	-	-	-	-	-	-	-
15																								
16																	-	-	-	-	-	-	-	-
17																								
18																	-	-	-	-	-	-	-	-
20																								
22																	-	-	-	-	-	-	-	-
25 30																								
	-								-								-							
35	-								-								-							
40	-								-								-							
50	-								-								-							

	Stellschraube, flach	2 Planflächen für Gewindestifte (Winkel vorgefertigt)	geschlitzte Kurvennnut	Schlüsselflächen	Toleranzmaß L			
Optionen	Treatise to Enterestationing IRC Treatise to Enterestationing IRC			© ⊠ O S	LKC			
OptNr.	FC, WFC	KFC	UC	SC	LKC			
Spez.	FC-Figi 1 Plantifache für Genindesith Inco. Bestellint . FC10-G3 WECFigi 2 Plantificher für dewindesithe Inco. Bestellint	Fügt eine Planfläche für Gewindestilt mit jedem gewünschten Winkel neben der Referenzseite hinzu (0°). KFC, G=1 mm-Schritte AG=15° Schritte \$ G=50 Bestellir:	Fügt eine geschiltzte Kurvennut hinzu. UC = Imm-Schritte Bestellnr UC10 UC+βrisL UC21 Wich erfetgibar bei D13 oder mehr. D	Fügt Schlüsselflächen hinzu. SC=1mm-Schritte SC+2e3. SC=0 oder SC≥1 SC=0	Geänderte Toleranz für Maß L. Bestelliv.] LKC ① L < 500> L± 0.05 L≥500> L± 0.1			